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Mathematical psychology?

Approached as an engineering exercise (AI)
● Functional performance
● Practical feasibility

Design a compositional memory system

Recognise a novel compound stimulus
● As a novel structuring
● Of familiar components
● Via familiar relations

VSA basis has Math Psych antecedents
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Outline

• Analogical mapping as subgraph isomorphism

• ACME localist connectionist model

• Replicator equations as localist model

• Introduction to Vector Symbolic Architectures

• Replicator equations via VSA
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Analogical mapping

• Structural alignment of conceptual
structures (source & target)

• Unmatched structure can be transferred
from source to target as heuristic inference

• Rutherford analogy: solar system ↔ atom

• Source & target encoded as sets of facts

• Sets of facts represented as graphs

• Mapping is subgraph isomorphism
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Encoded as facts

Solar system (Source)

S1: mass(Sun)

S2: mass(Planet)

S3: greater(S1, S2)

S4: attract(Sun, Planet)

S5: and(S3, S4)

S6: orbit(Planet, Sun)

S7: cause(S5, S6)

Atom (Target)

T1: mass(Nucleus)

T2: mass(Electron)

T3: greater(T1, T2)

T4: attract(Nucleus, Electron)

T6: orbit(Electron, Nucleus)
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Encoded as graphs
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Structural consistency
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Bad mapping
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Good mapping
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How to choose the mapping?

• What to encode?

• How to encode it as a graph

• Labels?

• Weights?

• Structural consistency = subgraph
isomorphism

• Mechanism to find isomorphisms
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ACME model of analogical
mapping

• Holyoak & Thagard (1989)

• ACME is a good example of a localist
connectionist model of analogical mapping

• Shows the approach and illustrates the
problem with localist connectionist models
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Mapping network (partial)

• Units represent possible
vertex mappings
(accumulators)

• Unit outputs represent
support for mappings

• Connections represent
compatibility between
vertex mappings

• Network settles to a state
representing a mapping
between the graphs

Planet ↔ Electron Sun ↔ Nucleus

Planet ↔ Nucleus Sun ↔ Electron

S.attract ↔ T.attract S.greater ↔ T.greater

S.attract ↔ T.greater S.Attract ↔ T.orbit

excitation

inhibition

Planet ↔ Electron Sun ↔ NucleusPlanet ↔ Electron Sun ↔ Nucleus

Planet ↔ Nucleus Sun ↔ ElectronPlanet ↔ Nucleus Sun ↔ Electron

S.attract ↔ T.attract S.greater ↔ T.greaterS.attract ↔ T.attract S.greater ↔ T.greater

S.attract ↔ T.greater S.Attract ↔ T.orbitS.attract ↔ T.greater S.Attract ↔ T.orbit

excitation

inhibition
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Problems with mapping network as
a practical mechanism

• Poor scaling: ~k2 units , ~k4 connections

• Represents one specific mapping problem

• Localist implementation implies creation or
recruitment of new units and connections
on the fly (sub-second)

• Process of creating the mapping network
appears to be symbolic and serial
– How to implement as a connectionist system?

– Computational cost of process
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Subgraph isomorphism via
replicator equations

• Won’t go directly from ACME to VSA

• Go via replicator equations

(Interpretable as a formalised version of the
ACME mapping network)

• Traditional approach to subgraph
isomorphism is heuristic discrete search

• Replicator equations are a continuous
maximisation approach
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Origin of subgraph isomorphism via
replicator equations

• Replicator equations arise in evolutionary game
theory (extensively studied mathematically)

• Applied to isomorphism by Pelillo (1999)

• Can represent graphs by numerical matrices

• He mapped graph isomorphism to maximization
of a continuous function of those matrices

• Embedded a discrete problem in continuous

• This is a heuristic solution (may not find the
maximal isomorphism)



19/2/2011 AMPC2011, Melbourne 16

Subgraph isomorphism via
replicator equations

• Vector representing support for all vertex
mappings (vector of accumulators)

• Matrix representing compatibility of vertex
mappings (constructed from edge
information in the graphs to be matched)

• Vector-matrix multiplication is propagation
of support between vertex mappings via
compatibility information

• Update of the vertex mapping vector
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Take two graphs

Possible solutions:

{A↔P, B↔Q, C↔R, D↔S}

{A↔P, B↔Q, C↔S, D↔R}
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Encode the graphs

A B

C

D

0010D

0010C

1100B

0000A

DCBA

A B

C

D

0010D

0010C

1100B

0000A

DCBA
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Association graph

• Represents a product of the two graphs

• Vertices represent base vertex mappings

• Edges show local structural consistency

g1:A▬B & g2:P▬Q → assoc:AP▬BQ

• Edges interpretable as inference rules

Edge AP▬BQ

Support for A↔P implies support for B↔Q
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Association graph & matrix

0000010100100101DS

0000100100101001DR

0000000111000001DQ

0000111000001110DP

0101000000100101CS

1001000000101001CR

0001000011000001CQ

1110000000001110CP

0010001000000101BS

0010001000001001BR

1100110000000001BQ

0000000000001110BP

0101010101010000AS

1001100110010000AR

0001000100010000AQ

1110111011100000AP

DSDRDQDPCSCRCQCPBSBRBQBPASARAQAP

BP

AQ

ASAR

CS CR

DRDS

BQ

APBS BR
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Replicator equations

π
i

Evidence for vertex mapping i (x
i
)

x(t) Prior support for vertex mappings

x(t+1) Posterior support for vertex mappings

W Inference rules (Association matrix)
Direct connection with Bayesian inference (Harper, 2010)
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Localist architecture

xt

w * Λ  xt+1πt

xt

w * Λ  xt+1πt

Each element of a vector or matrix may be
implemented as a connectionist unit
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Settling of localist system
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Performance of replicator equations

• Tested on graphs with > 65,000 vertices

• Competitive with state of the art search

• Typically settle in < 100 iterations

• Fast parallel implementation possible

• Settling time ~ independent of graph size

• Settling time depends strongly on how
constraining the graphs are

• Generalized to weighted, attributed graphs
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Problems with replicator equations

• Equivalent to a localist connectionist
architecture (and ACME mapping network)

• Has the same localist problems as ACME

– Scales poorly ( vector ~ k2, matrix ~ k4)

– Specific to one problem

In localist systems functional elements are
identified with physical resources (units
and connections)
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What are VSA?

• Family of connectionist architectures well
suited to “symbolic” processing

• High-dimensional vectors (~10,000) of low
resolution values

• Able to represent complex data structures

• Everything (simple or complex) is
represented in a fixed-dimensional space

• Small set of fixed vector operators (MAP)
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Math Psych antecedents

• Longuet-Higgins (1968) Holographic memory

• Willshaw (1971) Distributed associative memory

• Poggio (1973) Convolution and correlation
algebras

• Murdock (1982) TODAM

• Metcalfe (1982) CHARM

• Pike (1984) convolution and matrix memories
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Connectionist antecedents

• Smolensky (1990) Tensor product binding

• Plate (1991) Holographic Reduced
Representations

• Kanerva (1996) Binary Spatter Codes

• Gayler (1998) Multiply Add Permute codes

• Rachkovskij (2001) Context Dependent Thinning

Connectionists tend to be more concerned with
computational capabilities; math psychs with
consequences of simple representations
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How are VSA used?

VSA vectors and operators as the bricks and
mortar of computational circuits

• Multiply * : bind, query, apply mapping

• Add + : superpose, add to set

• Permute Pi( ) : quote

Design a fixed circuit that calculates the
desired result by virtue of it’s structure
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How are VSA used?

Multiset intersection circuit

1: k1A + k2B + k3C

2: k4A + k5B + k6D

4: k1k4A + k2k5B + noise

3:

4:
2: P2( )

1: P1( )

3:

4:
2: P2( )

1: P1( )

4: 4:
2: P2( )2: P2( )

1: P1( )1: P1( )
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Why are VSA good?

• Interesting properties of high-dimensional
vector spaces (Kanerva, 2009)

• Implementable as realistic connectionist
systems (Eliasmith & Anderson, 2003)

• Robust to noise (30% corruption tolerable)

• Graceful degradation

• Operators not learned

• Operators blind to interpretation of vectors



19/2/2011 AMPC2011, Melbourne 32

Why are VSA good?

Substitution is effectively a primitive operator
● Substitution is central to symbolic computing

The product of two vectors can be applied
as a substitution operator:
(A*B) (substitutes A for B and vice versa)

(A*B) * (A*X) = A*B*A*X = (A*A)*B*X = (B*X)
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Subgraph isomorphism via VSA

Translate the replicator equation algorithm
to a VSA implementation

• How to represent the data structures?

• How to operate on data structures?

• Preserve the replicator equation dynamics!

• Embody the algorithm as a fixed circuit
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Represent graphs as VSA vectors

• vertices: randomly chosen vectors A, B, …

• vertex sets : (A + B + C + D).

• edges: B*C, B*D, …

• edge sets: (B*C + B*D)

• vertex mappings: A*P, B*Q, ...

• state vector: k1A*P + k2A*Q …

• compatibility: A*P*B*Q + A*P*B*R + …
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Construct the initial values
• initial state vector

(dynamic construction of accumulators)

• compatibility vector

Each requires only a constant time operation
(algebraic parallelism)

SDRDQBPBQAPA
SRQPDCBAx




)()(

SRDCSRCARPCAQPCA
SRBARPBAQPBA

SQDBRQDBSQCBRQCB
SRSPRPQPDCDACABA

SQRQDBCBw
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Evidence propagation & update

• evidence propagation
– Product of state and compatibility vectors

(constant-time operation)

• update operation
– Apply previously introduced multiset

intersection circuit (constant-time operation)
3:

4:
2: P2( )

1: P1( )

3:

4:
2: P2( )

1: P1( )

4: 4:
2: P2( )2: P2( )

1: P1( )1: P1( )
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Fully distributed architecture

cΛ

c

xt

w * Λ cleanup  xt+1πt
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Settling of distributed system
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Salient points

• It works! (Only tested on a few graphs)

• Hardware is fixed

• Problem is loaded as patterns of activation

• Those patterns are calculated holistically
from the graph vector representations

• Many aspects of the approach seem
amenable to mathematical exploration


