Analogical mapping with Vector Symbolic Architectures

Ross W. Gayler La Trobe University r.gayler@gmail.com

Simon D. Levy Washington and Lee University levys@wlu.edu

Mathematical psychology?

Approached as an engineering exercise (AI)

- Functional performance
- Practical feasibility

Design a compositional memory system

Recognise a novel compound stimulus

- As a novel structuring
- Of familiar components
- Via familiar relations

VSA basis has Math Psych antecedents

Outline

- Analogical mapping as subgraph isomorphism
- ACME localist connectionist model
- Replicator equations as localist model
- Introduction to Vector Symbolic Architectures
- Replicator equations via VSA

Analogical mapping

- Structural alignment of conceptual structures (source & target)
- Unmatched structure can be transferred from source to target as heuristic inference
- Rutherford analogy: solar system ↔ atom
- Source & target encoded as sets of facts
- Sets of facts represented as graphs
- Mapping is subgraph isomorphism

Encoded as facts

Solar system (Source)

- S1: mass(Sun)
- S2: mass(Planet)
- S3: greater(S1, S2)
- S4: attract(Sun, Planet)
- S5: and(S3, S4)
- S6: orbit(Planet, Sun)
- S7: cause(S5, S6)

Atom (Target)

- T1: mass(Nucleus)
- T2: mass(Electron)
- T3: greater(T1, T2)
- T4: attract(Nucleus, Electron)

T6: orbit(Electron, Nucleus)

Encoded as graphs

Solar system

Structural consistency

Bad mapping

Solar system

Atom

Good mapping

Solar system

How to choose the mapping?

- What to encode?
- How to encode it as a graph
- Labels?
- Weights?
- Structural consistency = subgraph isomorphism
- Mechanism to find isomorphisms

ACME model of analogical mapping

- Holyoak & Thagard (1989)
- ACME is a good example of a localist connectionist model of analogical mapping
- Shows the approach and illustrates the problem with localist connectionist models

Mapping network (partial)

- Units represent possible vertex mappings (accumulators)
- Unit outputs represent support for mappings
- Connections represent compatibility between vertex mappings
- Network settles to a state representing a mapping between the graphs

Problems with mapping network as a practical mechanism

- Poor scaling: $\sim k^2$ units , $\sim k^4$ connections
- Represents one specific mapping problem
- Localist implementation implies creation or recruitment of new units and connections on the fly (sub-second)
- Process of <u>creating</u> the mapping network appears to be symbolic and serial
 - How to implement as a connectionist system?
 - Computational cost of process

AMPC2011, Melbourne

Subgraph isomorphism via replicator equations

- Won't go directly from ACME to VSA
- Go via replicator equations

 (Interpretable as a formalised version of the ACME mapping network)
- Traditional approach to subgraph isomorphism is heuristic discrete search
- Replicator equations are a continuous maximisation approach

Origin of subgraph isomorphism via replicator equations

- Replicator equations arise in evolutionary game theory (extensively studied mathematically)
- Applied to isomorphism by Pelillo (1999)
- Can represent graphs by numerical matrices
- He mapped graph isomorphism to maximization of a continuous function of those matrices
- Embedded a discrete problem in continuous
- This is a heuristic solution (may not find the maximal isomorphism)

Subgraph isomorphism via replicator equations

- Vector representing support for all vertex mappings (vector of accumulators)
- Matrix representing compatibility of vertex mappings (constructed from edge information in the graphs to be matched)
- Vector-matrix multiplication is propagation of support between vertex mappings via compatibility information
- Update of the vertex mapping vector

Take two graphs

Possible solutions: { $A \leftrightarrow P, B \leftrightarrow Q, C \leftrightarrow R, D \leftrightarrow S$ } { $A \leftrightarrow P, B \leftrightarrow Q, C \leftrightarrow S, D \leftrightarrow R$ }

Encode the graphs

- A B C D
- **A** 0 0 0 0
- **B** 0 0 1 1
- **C** 0 1 0 0
- **D** 0 1 0 0

Association graph

- Represents a product of the two graphs
- Vertices represent base vertex mappings
- Edges show local structural consistency g1:A—B & g2:P—Q \rightarrow assoc:AP—BQ
- Edges interpretable as inference rules
 Edge AP—BQ
 Support for A↔P implies support for B↔Q

Association graph & matrix

	AP	AQ	AR	AS	BP	BQ	BR	BS	СР	CQ	CR	CS	DP	DQ	DR	DS
AP	0	0	0	0	0	1	1	1	0	1	1	1	0	1	1	1
AQ	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
AR	0	0	0	0	1	0	0	1	1	0	0	1	1	0	0	1
AS	0	0	0	0	1	0	1	0	1	0	1	0	1	0	1	0
BP	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
BQ	1	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1
BR	1	0	0	1	0	0	0	0	0	1	0	0	0	1	0	0
BS	1	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0
СР	0	1	1	1	0	0	0	0	0	0	0	0	0	1	1	1
CQ	1	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0
CR	1	0	0	1	0	1	0	0	0	0	0	0	1	0	0	1
CS	1	0	1	0	0	1	0	0	0	0	0	0	1	0	1	0
DP	0	1	1	1	0	0	0	0	0	1	1	1	0	0	0	0
DQ	1	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0
DR	1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0
DS	1	0	1	0	0	1	0	0	1	0	1	0	0	0	0	0

Replicator equations $\pi_{i}(t) = \sum_{j=1}^{N} W_{ij} x_{j}(t)$ $x_{i}(t+1) = \frac{x_{i}(t)\pi_{i}(t)}{\sum_{j=1}^{N} x_{j}(t)\pi_{j}(t)}$

- π_i Evidence for vertex mapping *i* (x_i)
- *x(t)* Prior support for vertex mappings
- x(t+1) Posterior support for vertex mappings
- W Inference rules (Association matrix)

Direct connection with Bayesian inference (Harper, 2010)

Localist architecture

Each element of a vector or matrix may be implemented as a connectionist unit

Settling of localist system

Performance of replicator equations

- Tested on graphs with > 65,000 vertices
- Competitive with state of the art search
- Typically settle in < 100 iterations
- Fast parallel implementation possible
- Settling time ~ independent of graph size
- Settling time depends strongly on how constraining the graphs are
- Generalized to weighted, attributed graphs

Problems with replicator equations

- Equivalent to a localist connectionist architecture (and ACME mapping network)
- Has the same localist problems as ACME
 - Scales poorly (vector ~ k^2 , matrix ~ k^4)
 - Specific to <u>one</u> problem

In localist systems functional elements are identified with physical resources (units and connections)

What are VSA?

- Family of connectionist architectures well suited to "symbolic" processing
- High-dimensional vectors (~10,000) of low resolution values
- Able to represent complex data structures
- Everything (simple or complex) is represented in a fixed-dimensional space
- Small set of fixed vector operators (MAP)

Math Psych antecedents

- Longuet-Higgins (1968) Holographic memory
- Willshaw (1971) Distributed associative memory
- Poggio (1973) Convolution and correlation algebras
- Murdock (1982) TODAM
- Metcalfe (1982) CHARM
- Pike (1984) convolution and matrix memories

Connectionist antecedents

- Smolensky (1990) Tensor product binding
- Plate (1991) Holographic Reduced Representations
- Kanerva (1996) Binary Spatter Codes
- Gayler (1998) Multiply Add Permute codes
- Rachkovskij (2001) Context Dependent Thinning

Connectionists tend to be more concerned with computational capabilities; math psychs with consequences of simple representations

How are VSA used?

VSA vectors and operators as the bricks and mortar of computational circuits

- Multiply * : bind, query, apply mapping
- Add +: superpose, add to set
- Permute P_i(): quote

Design a fixed circuit that calculates the desired result by virtue of it's structure

How are VSA used?

- 1: $k_1A + k_2B + k_3C$
- 2: $k_4A + k_5B + k_6D$
- 4: $k_1k_4A + k_2k_5B + noise$

Why are VSA good?

- Interesting properties of high-dimensional vector spaces (Kanerva, 2009)
- Implementable as realistic connectionist systems (Eliasmith & Anderson, 2003)
- Robust to noise (30% corruption tolerable)
- Graceful degradation
- Operators not learned
- Operators blind to interpretation of vectors

Why are VSA good?

Substitution is effectively a primitive operator

• Substitution is central to symbolic computing

The product of two vectors can be applied as a substitution operator:

(A*B) (substitutes A for B and vice versa)
 (A*B) * (A*X) = A*B*A*X = (A*A)*B*X = (B*X)

Subgraph isomorphism via VSA

Translate the replicator equation algorithm to a VSA implementation

- How to represent the data structures?
- How to operate on data structures?
- Preserve the replicator equation dynamics!
- Embody the algorithm as a fixed circuit

Represent graphs as VSA vectors

- vertices: randomly chosen vectors A, B, ...
- vertex sets : (A + B + C + D).
- edges: *B***C*, B*D, ...
- edge sets: (*B***C* + B*D)
- vertex mappings: A*P, B*Q, ...
- state vector: $k_1 A^*P + k_2 A^*Q \dots$
- compatibility: A*P*B*Q + A*P*B*R + ...

Construct the initial values

initial state vector

x = (A + B + C + D) * (P + Q + R + S)

=A*P+A*Q+...+B*P+B*Q+...+D*R+D*S

(dynamic construction of accumulators)

compatibility vector

w = (B * C + B * D) * (Q * R + Q * S) + (A * B + A * C + A * D + C * D) * (P * Q + P * R + P * S + R * S) = B * C * Q * R + B * C * Q * S + B * D * Q * R + B * D * Q * S + A * B * P * Q + A * B * P * R + ... + A * B * R * S + A * C * P * Q + A * C * P * R + ... + A * C * R * S + ... + C * D * R * S

Each requires only a constant time operation (algebraic parallelism)

19/2/2011

AMPC2011, Melbourne

Evidence propagation & update

- evidence propagation
 - Product of state and compatibility vectors (constant-time operation)
- update operation
 - Apply previously introduced multiset intersection circuit (constant-time operation)

Fully distributed architecture

Settling of distributed system

Salient points

- It works! (Only tested on a few graphs)
- Hardware is fixed
- Problem is loaded as patterns of activation
- Those patterns are calculated holistically from the graph vector representations
- Many aspects of the approach seem amenable to mathematical exploration